章节目录 第二十七章 信息生命体(七)(1 / 1)

作品:《动作之旅

5.集群

我们和其他小组最近的一些研究,强调了在与环境的因果互动和内部信息处理中适应性和鲁棒性之间的平衡(Walker et al. 2016),已知信息处理特性表现出从稳定阶段(以信息存储为主)到混沌阶段(以信息传递为主)之间临界转变距离的强烈依赖性。众所周知,临界系统具有生物系统的两个基本特征:对各种不同环境条件的适应性和鲁棒性。我们期望基因调控中的临界性普遍存在,这将为生物网络独特的信息处理和控制特性研究提供参考。

Control kernel 控制核

复杂系统研究的主旨之一是理解并理预测出系统涌现的全局动态,例如动态轨迹或最终状(Barabási 2016)。这些代表系统集群行为的全局状态可以通过施加外部因果干预来改变。引导整个系统从初始状态到达期望的最终状态。这为许多领域应用都提供了强大的工具,包括从舆论动态相关的问题到流行病,从细胞的分化到社会性昆虫的巢穴选择问题等等。

最近的研究发展了复杂网络控制相关的数学基础,试图通过理解因果结构与各组成部分动态的更新规则来寻找严格的控制机制。Liu 等人(2011)发展了他们的前瞻性框架,将具有线性动态过程的有向复杂网络可控性问题简化为一个图论问题。利用他们的理论可以确定一组能够完全控制整个网络动态的驱动节点(driver nodes)。他们还发现,所确定的驱动节点往往是低度节点,并且总数主要由网络的度分布决定。

生物系统模型大多是非线性动力学系统,完全可控性既不可行也没有必要。相反,找到一种特定的控制机制,能够将一个给定的系统从特定的初始状态或轨迹引导到另一组期望状态或轨迹集合,是更为现实的,往往也足够的(Cornelius et al. 2013)。例如,控制基因调控网络的主要目的之一是将系统引导到特定的细胞状态,而非任意的表达水平。这种表型控制通常被定位在整个网络的一小部分中,以能驱动系统到期望吸引子的控制核来定义。不过,控制核的大小通常比一般随机网络还要更大(Liu et al. 2011; Kim et al. 2013; Gates Rocha 2016; Choo et al. 2018)。这表明生物系统的可控性程度可能存在一定的范围,可以通过控制核的大小来量化。因此我们会将可控性程度视为生物系统信息架构的基本特征(Walker et al. 2016; Kim et al. 2015),以区别于所有非生物集群。

Causal emergence 因果涌现

识别复杂系统中的因果关系是理解其涌现行为最基本的方法之一。然而这却是一项艰巨的任务:不仅因为复杂系统中的因果结构很复杂(坦率地讲它们确实很复杂),而且因为因果结构可以在多个时空尺度上进行分析,往往让我们搞不清楚哪种尺度是分析的首选(如果有的话)。长期以来,人们一直认为主因结构只能在最低(微观)尺度上定义,更高尺度上的因果结构是有用的,但只是对主因结构的粗略描述。即认为微观层面的因果关系确定了所有更高层次的因果结构,更高(宏观)层次的因果并没有实际上的因果贡献(Kim 1993,2000)。

这种观念下的还原论方法在科学各领域取得了广泛的成功,包括物理学和化学的重大发展。尽管如此,因果涌现的另一种可能——宏观尺度是因果结构的重要驱动,被一再提出来,因为它能对各种类型的生物集群行为提供更简单的解释:从表观遗传学到蚁群的群体决策,再到大脑中的心理状态等等。以往对这种因果涌现的研究大多局限于定性论证,而最近 Hoel 等人(2013)和 Hoel(2017)所做的定量研究表明,在一些系统中,因果结构可能无法完全被微观尺度结构捕获,相反宏观层面的因果结构会更有效、具有更丰富的信息。

如上所述,我们认为寻找一种复杂系统的控制机制,可以成为研究不同层次因果结构的有用工具,它能从局部(微观)层次因果深入洞悉驱动节点对全局(宏观)系统动态转向的影响。

生物集群系统信息架构与因果结构之间的耦合关系

如上节所讨论,在以往研究中已经暗示了生命系统信息架构与因果结构之间的关系。然而它们之间是否存在有意义的关系、若存在是否能够区分不同生物集群行为,这些问题却仍然是模糊、没有定论的。在这里我们提供了一个定量的例子,基于经验数据集建立了一个生物网络的动力模型,其规模较小故允许进行统计分析。由于系统生物学中高通量技术和数据驱动方法的出现,细胞生物通路的布尔网络模型是满足这一必要条件的最佳候选之一。